CHAPTER

SOFTWARE DEVELOPMENT

\ ",‘j
Any process that tries to reduce software development to a “no brainer” will eventuc
produce just that: a product developed by people without brains.

-—Andy Hunt aud Dave Thomas, “Cook Until Done’ ol

VIGNETTE

Stock Markets Susceptible to Software Glitches

Regulation National Market System (Reg NMS) is a set of rules implemented by the‘ Securities and
Exchange Commission in 2007 to boost competition across the various stock exchanges. Reg NMS
essentially enables traders to do comparison shopping across the various exchanges to find the best
price. The rules also had the effact of lowering trading costs and accelerating the speed of trade
exgcutions to a 'split second.’ The implementation of Reg NMS led to a rise iir the number of firms
engaged in “high-frequency trading”—that is, trading that uses powerful computers and complex com-
puter algorithms to trade hundreqs or even thousands of times a day. High-frequency trading often
employs stock holding periods of only a few seconds to take advantage of tiny price changes.? Unfor-
tunately, there have been several recent examples in which problems with the software used in high-

frequency trading operations have wreaked havoc on the market—causing problems for the listed

companies and stock traders alike.

Copyright 2014 Cengage Learning. All Rights Reserved. May not be copicd, scanucd. or du|

phcaicd, in wholc or i part. Due 1o clecironic rights, some third pany content may be suppressed from the cBook and/or eChapter(s)
Editonal review has decmed that any suppresscd coulent does not matcrally affeel the overall le

arning expenence. Cengage Leanming rescrves the night 1o iemove addinional contcnt at any ime il subscquent nghts restnctions require it

markets occurred in which the Dow Jones Indus-

On May 6, 2010, a “flash crash” of U.S. stock
00 points over the course of
trial average dropped over 700 points in five minutes, only to recover 600 p

i illion in market value and left .
the néxt 20 minutes. It was a roller coaster ride that briefly erased $1 trillion

hat had happened.® Ultimately, it was determined

investors and regulators struggling to understand wi

; i sing automated
that the flash crash was caused by the actions of a single, large investor who was using

i software
m trading software to trade futures on the stocks in the Standard & Poor 500 stock index. The

placed large sell orders that were, at first, absorbed by other buyers—many of whom were also using
automated trading software. However, the algorithm used by the seller's trading software responded
to the increase in market activity in the futures contracts by automatically placing larger and larger
sell orders, which the market could no longer absorb. This resulted in a rapid decline in the prices of

the underlying stocks.*

Better Alternative Trading System (BATS) is the third-largest equities exchange operator in the
United States. The BATS Exchange accounts for 11 percent of the trading volume of U.S. stock
shares.>® On March 23, 2012, the day that BATS launched its own initial public offering (IPO), a “bad
trade” for shares of Apple at an incorrect price was accepted on the BATS Exchange. This triggered a
flurry of high-frequency trading that resulted in a 9.4 percent drop in Apple’s stock’s price in just five
minutes. The sudden drop in price triggered a trading “circuit breaker’ that halted t[ading in Apple
shares and likely prevented a broader crash affecting other stocks. As it turned out, BATS was having
technical problems in processing orders for any companies whose ticket symbol was in the range of
A to BF, a range that includes not only Apple, but also the firm's own symbol BATS. The BATS stock
opened at $16 per share, and at one point appeared to be selling at less than a penny per share.
Eventually BATS was forced to halt trading of its own stock and cancel all trades of the stock for that

day. BATS also pulled its IPO, which was put on hold “for the foreseeable future.””-®

Chapter 7

Copyright 2014 Cengage Leamning. All Rights Rescrved. May not be copicd. scanned. or duplicaled, in whole or in part. Due to clectronic rights. somc third party content may be suppressed from the cBook and/or eChapler(s)
Editonial ‘uncw has deemed that any suppressed conlent docs not matcrially afect the overall Icaming expericnce. Cengage Leaming rescrves the nght to rcmove additional content at any lime if subsequent rights restnictions require it

In May 2012, computer problems on the NASDAQ stock exchange disrupted Facebook’s IPO.
As a result, Facebook trading was delayed half an hour beyond the normal trading tirﬁe for an IPO.
Once trading began, over 80 million shares of Facebook were traded in the first 30 seconds, but
traders complained that their orders were not being completed promptly and that they were being
charged more than expected. Traders also complained that they were not getting confirmation on

. , PLX]
their Facebook trades; thus, they did not know if they owned the stock or not.

Knight Capital is a global financial services firm that engages in market making of U.S. securities
and electronic stock transaction execution. As a market maker, the firm holds a large quantity of
shares of various stocks to facilitate trading in those stocks. The firm displays buy and sell prices it
is willing to accept and when an order is received, the market maker immediately fills a b‘uy order
from its own inventory or finds a buyer for a sell order. All this happens in seconds. In August 2012,
following the installation of new trading software, Knight Capital’s computers sent incorrect orders for
over 140 stocks listed on the New York Stock Exchange.® As a result, several of these stocks traded
at 20 times their normal volume and lost over 10 percent of their value in a matter of seconds before
recovering.'® After sorting through the transactions, the New York Stock Exchange canceled trades in
the stocks that were most affected by the problem. In the days following the glitch, Knight Capital's

own stock price fell from just over $1C per share to under $3 per share."!

According to the rules of the stock exchanges, stock orders must be routed to those exchanges
that offer the best bid and offer prices. In January 2013, BATS was forced to acknowledge more
software-related problems when it notified its clients that due to problems with its trading software,
the firm did not meet that requirement for many orders. As a result, over the course of four years,
hundreds of thc;usands of orders were executed at inferior prices.'?> The full fallout from this

admission is yet to be seen, but trader lawsuits and other repercussions can be expected.

Software Development

Copyright 2014 Cengage Learming. All Rights Rescrved. May not be copicd. scanncd, or duplicaicd, in whole or in part. Duc Lo cl:ctronic nghts, some third party content may be suppressed from the cBook and/or eChapter(s)
Editorial review has decmed that any suppresscd content does not materially affect the overall lcarning cxpericnce. Cengage Leaming rescrves the nght to remove additional content at any ume if subscquent rights restrictions require it

264

Chapter 7

Copyright 2014 Cengage Leaming. All Rights Reserved. M;
Editonal review has deemed that any suppressed content does n

e Cpnsmer t teams responsible for the development of
opr:i?\n and other sophisticated trading tools should
g Why or why not?

ding software to avoid the

1. Do you think that the software devel
S igh-frequency
programs to support hig At
bear any responsibility for these trading fiascos? o
i r
2. What measures could be taken to im.prove t:\e quality o
problems discussed in the opening vignette”

LEARNING OBUECTIVES

As you read this chapter, consider the fol!o‘wlné"que_s’t_i‘ONS=

1. Why must companies place an increased emphasis on-the use of -

high-quality software in business systems, industrial ;pr'ocess-cont‘rc')l rid
systems, and consumer products? ~ = . . AW

2. What potential ethical issues do,sg{ftvg;ére;m‘jc'!rjtjlfé!::,turefsﬂfaﬁm’U}‘"}ia; n
trade-offs between project the'dules;:pr'pjectfb(qsts,*and4spﬂwar'_]
quality? : el e

cléims'? ‘ el

4. What are the essential cbmpdqehts fa
‘ methodology, and what are the benefits of using st
5. How can the Capability M turity Model Integration
n

STRATEGIES FOR ENGINEERING
QUALITY SOFTWARE

High-quality software systems are systems that are easy to learn and use because they
perform quickly and efficiently; they meet their users’ needs; and they operate safely
and reliably so that system downtime is kept to a minimum. Such software has long
been required to support the fields of air traffic control, nuclear power, automobile
safety, health care, military and defense, and space exploration. Now that computers
and software have become integral parts of almost every business, the demand for high-
quality software is increasing. End users cannot afford system crashes, lost work, or

lower productivity. Nor can they tolerate security holes through which intruders can
spread viruses, steal data, or shut down Web sites. Software manufacturers face eco-
nomic, §thica], and organizational challenges associat

ed with improving the quality of
their software. This chapter covers many of these issues.

A software defect is any error that, if not removed, could cause a software system
to fail to meet its users’ needs. The impact of these defects can be trivial; for example,

ay nol be copied, scanncd, or duplicated, in whole or in part. Due to electronic rights. some third party content may be suppressed from the cBook and/or eChapter(s).
ol materially affect the overall learning expericnce Cengage Leaming reserves the right to remave additional content at any time if subsequent rights restrictions require it

- Compslterized sensor in a refrigerator’s ice cube maker might fail to recognize that the
tray is h‘l“ and continue to make ice. Other defects could lead to tragedy—the control
system for an automobile’s antilock brakes could malfunction and send the car into an
uncontrollable spin. The defect might be subtle and undetectable, such as a tax prepara-
tion package that makes a minor miscalculation; or the defect might be glaringly obvious,
such as a payroll program that generates checks with no deductions for Social Security or
other taxes. Mere are some notable software bugs that have occurred recently:

* Nokia’s Lumina 900 smartphone had a software problem that could cause the

device to lose its high-speed data connection. The company had hoped that

the new smartphone would help raise its share of the U.S. market, which had 265
slipped below 1 percent. The software glitch was a major setback for the firm

and caused it to lower its profit forecasts. As a result, Nokia shares hit a

15-year low."

e The IRS plans to invest $1.3 billion through 2024 to update its software for
handling the filing of tax returns; however, an early change designed to speed
up the processing of tax returns resulted in refunds that were delayed by up
to 10 days for millions of taxpayers in 2012.1

« Some 4,000 owners of the 2013 Chevy Volt were informed that a software
bug could cause their plug-in hybrid car’s electric motor to shut down while
the vehicle is in motion.'

e In late 2012, many people looking to take part in a Georgia Powerball game
were upset when a software error interrupted sales of tickets for the $425
million jackpot. The problem was widespread, affecting many locations in
Georgia, lasting most of the day of the drawing.'®

e Washington State University recently implemented a $15 million
software system designed to handle all major student processes—f{rom
registering for class, to paying tuition, to scheduling of advisers. Unfortu-
nately, user unfamiliarity with the system and software bugs led to lengthy
delays in processing financial aid. Many students who normally rely on
financial aid had to dip into reserve funds or call upon parents to help pay
for tuition, books, housing, and food until they could receive their
financial aid.'”

Software quality is the degree to which a software product meets the needs of its
users. Quality management focuses on defining, measuring, and refining the quality of
the development process and the products developed during its various stages. These
products—including statements of requirements, flowcharts, and user documentation—
are known as deliverables. The objective of quality management is to help developers
deliver high-quality systems that meet the needs of their users. Unfortunately, the first
release of any software rarely mects all its users’ expectations. A software product does
not usually work as well as its users would like it to until it has been used for a while,
found lacking in some ways, and then corrected or upgraded.

A primary cause of poor software quality is that many developers do not know how to
design quality into software from the very start; some simply do not tafk the time to do
so. To develop high-quality software, developers must define and follow a set of rigorous
software engineering principles and be committed to learning from past mistakes. In

Software Development

Copyright 2014 Cengage Leaming. All Rights Rescrved. May not be copicd, scanncd, or duplicated, in whole or in part. Dug to electronic rights, some third party content may be suppressed from the eBook and/or cChapter(s).
Editonal review has deemed that any suppressed content does not maicrially afeci the overall lemwning expenienco. Cengago Leaming reserves the right 1o yumove additionul content at any lime if subsequent rights restrictions require it

Chapter 7

-, Reserved M
Copyright 2014 Congage Learmng. All Rights
Bdstoral review has doomed that sy sepjwesscd content does sl

. ; i rate and
. in which their systems will ope
addition, they must understand the environment in which

’

e.
design systems that are as immune to human error as ::}t:l':ln defining user requirements

All software designers and programmers make mis dv. even experienced software
and turning them into lines of code. According to one study, lementation defect for
developers unknowingly inject an average of one design or imp lazv—they're just
. - lopers aren’t incompetent or 1azy y .)
every 7 to 10 lines of code. The deve P these mistakes can result in defects.
human. Everyone makes mistakes, but in softwtal_'e, : cial code, Coverity (a

Based on an analysis of a sample of 300 million lines of comme : thousand
software development testing firm) found that the average number of dffgeCL\ per ' kft
lines of code developed by software manufacturing companies was :64- The M'c_m‘\(:h
Windows 7 operating system contains more than 50 million lines of code. Assumu:lg e
Microsoft software developers produced code at this accuracy rate, there would still be
roughly 32,000 defects in Windows 7. Thus, critical software used daily by workers .
worldwide likely contains tens of thousands of defects. Interestingly, based on an llln:ll‘ySlS
of 37 million lines of open source code, Coverity found that the average number of defects
per thousand lines of code was .45 or 30% less than in commercial code.”

Another factor that can contribute to poor-quality software is the extreme pressure
that software companies feel to reduce the time to market for their products. They are
driven by the need to beat the competition in delivering new functionality to users, to
begin generating revenue to recover the cost of development, and to show a profit for
shareholders. They are also driven by the need to meet quarterly earnings forecasts used
by financial analysts to place a value on the stock. The resources and time needed to
ensure quality are often cut under the intense pressure to ship a new product. When
forced to choose between adding more user features and doing more testing, most soft-
ware companies decide in favor of more features. They often reason that defects can be
patched in the next release, which will give customers an automatic inc
Additional features make a release more useful and therefore casier to
A major ethical dilemma for software development organizations is:

“How much additional
cost and effort should they expend to ensure that their produc

ts and services meet
customers’ expectations?” Over 1.25 million apps have been created for the various types

of mobile devices; however, it is estimated that less than 20 percent of these apps exceed
1,000 downloads because of faulty software quality that results in poor application
performance.?” Customers are stakeholders who are key to the success of a software
application, and they may benefit from new features. However, they also bear the
of errors that aren’t caught or fixed during testing. Thus, customers challenge whe
cut software quality in favor of feature enhancement.

As a result of the lack of consistent quality in software, many organizations avoid
buying the first release of a major software product or prohibit its use in critical systems;
their rationale is that the first release often has many defects that cause problems for
users. Because of the defects in the first two popular Microsoft operating systems (DOS
and Windows), including their tendency to crash unexpectedly, many believe that
Microsoft did not have a reasonably reliable operating system until its third major
variation—Windows NT.

Even software products that have been reliable over a long period can falter unex-
pectedly when operating conditions change. For instance, software in the Cincinnati Bell
telephone switch had been thoroughly tested and had operated successfully for months

entive to upgrade.
sell to customers,

burden
ther to

copied. sconned. or duphcated » adole or mYont Duxc 1o clectronic nghts, some thard party costent may be mppressed from fic cBock mdior ¢Chapter(s)
wmﬂhm;hq;qulmm.*Im“—‘q-l**-n*-

after it was deployed. However, when the time changed from daylight saving time to stan-
dard time for the first time after the software was deployed, the switch failed because it
was overwhelmed by the number of calls to the local “official time” phone number from
people who wanted to set their clocks. The large increase in the number of simultaneous

calls to the same number was a change in operating conditions that no one had
anticipated.

The Importance of Software Quality
A business information system is a set of interrelated components—including hardware,
software, databases, networks, people, and procedures—that collects and processes data
and disseminates the output. A common type of business system is one that captures and
records business transactions. For example, a manufacturer’s order-processing system
captures order information, processes it to update inventory and accounts receivable,

and ensures that the order is filled and shipped on time to the customer. Other examples
include an airline’s online ticket-reservation system and an electronic funds transfer
system that moves money among banks. The accurate, thorough, and timely processing
of business transactions is a key requirement for such systems. A software defect can be
devastating, resulting in lost customers and reduced revenue. How many times would bank
customers tolerate having their funds transferred to the wrong account before they
stopped doing business with that bank?

Another type of business information system is the decision support system (DSS),
which is used to improve decision making in a variety of industries. A DSS can be used to
develop accurate forecasts of customer demand, recommend stocks and bonds for an
investment portfolio, or schedule shift workers in such a way as to minimize cost while
meeting customer service goals. A software defect in a DSS can result in significant
negative consequences for an organization and its customers.

Software is also used to control many industrial processes in an effort to reduce costs,
eliminate human error, improve quality, and shorten the time it takes to manufacture
products. For example, steel manufacturers use process-control software to capture data
from sensors about the equipment that rolls steel into bars and about the furnace that
heats the steel before it is rolled. Without process-control computers, workers could react
to defects only after the fact and would have to guess at the adjustments needed to correct
the process. Process-control computers enable the process to be monitored for variations
from operating standards (e.§., a low furnace temperature or incorrect levels of iron ore)
and to eliminate product defects before they affect product quality. Any defect in this

software can lead to decreased product quality, increased waste and costs, or even unsafe
operating conditions for employees.

267

Software is also used to control the operation of many industrial and consumer
products, such as automobiles, medical diagnostic and treatment equipment, televisions,
radios, stereos, refrigerators, and washers. A software defect could have relatively minor
consequences, such as clothes not drying long enough, or it could cause serious damage,
such as a patient being overexposed to powerful X-rays.

As a result of the increasing use of computers and software in business, many
companies are now in the software business whether they like it or not. The quality of
software, its usability, and its timely development are critical to almost everything

Software Development

Copyright 2014 Cengage Leaming. All Rights Reserved. May not be copicd, scanned. or duplicaled, in whole or in part. Duc o clectronsc nghts. some third cChapler(s|
3 pasty content may be suppreased from the cBook and/or
Editoral review has deemed that any lupwmdwlluldnu-u--mallymml&tmﬂlam‘m&g*hﬁwu&ﬁhhm:“un-ﬂ-&ﬂwwm—l—)nn

anization develops software cz?n put lih a:lcu:t
gg? z:;%ems may have caused frusuanon.:: ! past,
3;: fI:xrtzl to a business, causing it. to mlrs(.:d ;‘:cml:;“
uct development costs, and deliver p

peed with whi

businesses do. The s
Softw.

of or behind its competitors.
but mismanaged software can now
delivery dates, incur increased prod

have poor quality. ‘
Business executives frequently face ethical question
they should invest to ensure the development of high-qu S0
takes a short-term, profit-oriented view may feel that any addition
roduct’s release, res

spent on quality assurance will only delay a new p y
r, a different manager may conside

s of how much money and effort
ality software. A manager who

3 al time and money
ulting in a delay

r it unethical

in sales revenue and profits. Howeve .
not to fix all known problems before putting a product on the market and charging
customers for it.
ther their products could cause damage
e rarely

Other key questions for executives are whe
and what their legal exposure would be if they di
lethal, and few personal injuries are related to software failures. I
software introduces product liability issues that concern many executives.

d. Fortunately, software defects ar:
Jowever, the use of

SOFTWARE PRODUCT LIABILITY

§oftware product litigation is certainly not new. One lawsuit in the early 1990s involved a
financial institution that became insolvent because defects in a purchased software appli-
cation caused errors in its integrated general ledger system, customers’ passbooks, and
loan statements. Dissatisfied depositors responded by withdrawing more than $S million.
Another case involved an accident that occurred when a Ford truck stalled because of a
software defect in the truck’s fuel injector. In the ensuing accident, a young child was
killed.?! A state supreme court later affirmed an award of 7.5 million in punitive damages
against the manufacturer. In 2008, a faulty onboard computer caused a Qantas passenger
flight traveling between Perth and Singapore to plunge some 8,000 feet in 10 seconds
injuring 46 passengers. Qantas moved quickly to compensate all passengers with a rc‘:;und
of their ticrl“(et prices, a $2,000 travel voucher, and a promise to pay all medical-related
expenses. Even so, the Australia Slate >

e e o33 n law firm of Slater & Gordon was engaged to represent a

The liability of manufacturers, sellers, lessors, and others for injurics caused b
defective products is commonly referred to as product liability. There is no federa{
product liability law; instead, product liability in the United States is mainly covered b
common law (made by state judges) and Article 2 of the Uniform Commercial Cod ’
which deals with the sale of goods. “

If a:softw‘ar.e defect causes injury or loss to purchasers, lessees, or users of the
product; the injured parties may be able to sue as a result. Injury or loss can come in th
form of physical mishaps and death, loss of revenue, or an increase in expenses due to ae
business disruption caused by a software failure. Software product liability claims are
typically based on strict liability, negligence, breach of warranty, or misrepresentation—
sometimes in combination with one another.

Strict liability means that the defendant is held responsible for injuring another per-
son, regardless of negligence or intent. The plaintiff must prove only that the software
product is defective or unreasonably dangerous and that the defect caused the injury

My not be copecd, scamaed, or duphcated, m whole or @ part. Duc 1o clectronc nghts, some therd sk
ety content mpy bt mgpressed feum o Dagmans)
Mﬂahﬁhwmh—mk*--'a“c--q-l;c:”‘.

There is no requirement to prove that the manufacturer was careless or ne

gligent, or to
prove who caused the defect. All parties in the chain of distribution—the manufacturer,

subcontractors, and distributors—are strictly liable for injuries caused by the product and
may be sued.

Defendants in a strict liability action may use several legal defenses, including the
doctrine of supervening event, the government contractor defense, and an expired statu.te
of limitations. Under the doctrine of supervening event, the original seller is not liable if
the software was materially altered after it left the seller’s possession and the alteration
caused the injury. To establish the government contractor defense, a contractor must
prove that the precise software specifications were provided by the government, that the
software conformed to the specifications, and that the contractor warned the government
of any known defects in the software. Finally, there are statutes of limitations for claim.s of
liability, which means that an injured party must file suit within a certain amount of time
after the injury occurs.

As discussed in Chapter 2, negligence is the failure to do what a reasonable person
would do, or doing something that a reasonable person would not do. When sued for
negligence, a software supplier is not held responsible for every product defect that causes
customer or third-party loss. Instead, responsibility is limited to harmful defects that
could have been detected and corrected through “reasonable” software development
practices. Contracts written expressly to limit claims of supplier negligence may be
disregarded by the courts as unreasonable. Software manufacturers or organizations with

software-intensive products are frequently sued for negligence and must be prepared to
defend themselves.

269

The defendant in a negligence case may either answer the charge with a legal

justification for the alleged misconduct or demonstrate t

hat the plaintiffs’ own actions
contributed to their injuries (contributory negligence). If proved, the defense of

contributory negligence can reduce or totally eliminate the amount of damages the
plaintiffs receive. For example, if a person uses a pair of pruning shears to trim his

fingernails and ends up cutting off a fingertip, the defendant could claim contributory
negligence.

A warranty assures buyers or lessees that a product meets certain standards of

quality. A warranty of quality may be either expressly stated or implied by law. Express
warranties can be oral, written, or inferred from the seller’s conduct. For example, sales
contracts contain an implied warranty of merchantability, which requires that the
following standards be met:

L]

The goods must be fit for the ordinary purpose for which they are used.
The goods must be adequately contained, packaged, and labeled.
The goods must be of an even kind, quality, and quantity within each unit.

The goods must conform to any promise or affirmation of fact made on the
container or label.

The quality of the goods must pass without objection in the trade.

¢ The goods must meet a fair average or middle range of quality.

If the product fails to meet the terms of its warranty, the buyer or lessee can sue for

breach of warranty. Of course, most dissatisfied customers will first seek a replacement,
a substitute product, or a refund before filing. a lawsuit.

Software Development

Copyright 2014 Cengage Leaming Al Rights Rescrved. May nol be copicd, scanncd. or duplicated, in whole or m part. Duc 1o electronic rights. some third content may be suppressed cChaplens)
.) . . party be from the cBook and/or
Editonal review has decmed that any npwv.ue‘wlllualdneslolmlmih'Iﬂ'tdlllcn\‘ﬂ'lllhlmin‘l:\puihl;x,cu“eLmnlmun‘hﬂnmcmulmmﬂwmmm!

¢ to limit their liability in the
; nted to run on a given
hat that software will do. Even
itv and fitness for a
b'le and refuse to
hether a warranty

attem

ties (O]
rran may be warra

write wa
requently software

Although a cermlp . T
assurance 18 given as Chanmhil
ludes the commitment of mer .
;uch a disclaimer clause un{e sond
‘ re contract. In deterrr‘unmg her e e
ts to evaluate if the contra . ¢ i
: ice. The relative education, €xXp

o th ract was offered on a

Software suppliers f
event of nonperformance.
machine configuration, ofte
if a contract specifically excl
specific use, the court may find ;

N enforce it or refuse to enforce the enti
disclaimer is unreasonable, the court attemp

rt and a
« s” or between an expe e
e & brgainim arties and whether the sales cont

ence, and bargaining power of the p ; .) o rmination. .
270 “take-it-or-leave-it” basis are considered in makll;lg thlspcllice; did not fulfill in order to win a
inti i act that the sup e tas
The plaintiff must have a valid contr PP vites the warranty, this claim

supp!
eie tFl')le M. A. Mortenson Company—one of

n no

breach-of-warranty claim. Because the softwar
can be extremely difficult to prove. For examp e a new version 0 £ bid-
the largest construction companies in the United States—installed a o oe new bid,
preparation software for use by its estimators. During the course of p‘repan I e e
the software allegedly malfunctioned several times, each time displaying the same cryp

error message. Nevertheless, the estimator submitted the bid and Mortenson won .the c:::l)n(-j
tract. Afterward, Mortenson discovered that the bid was $1.95 million lower than mtep}: .
and the company filed a breach-of-warranty suit against Timberline Software, makers of the
bid software. Timberline acknowledged the existence of the bug. However, the courts ruled
in Timberline’s favor because the license agreement that came with the software explicitly
barred recovery of the losses claimed by Mortenson.?® Even if breach of warranty can be
proven, the damages are generally limited to the amount of money paid for the product.

As mentioned in Chapter 2, intentional misrepresentation occurs when a seller or
lessor either misrepresents the quality of a product or conceals a defect in it. For exam-
ple, if a cleaning product is advertised as safe to use in confined areas and some users
subsequently pass out from the product’s fumes, they could sue the seller for intentional
misrepresentation or fraud. Advertising, salespersons’ comments, invoices, and shipping
labels are all forms of representation. Most software manufacturers use limited warranties
and disclaimers to avoid any claim of misrepresentation. :

Software Development Process

Developing information system software is not a simple process; it requires completing
many complex activities, with many dependencies among the various activities. Systems
analysts, programmers, architects, database specialists, project managers, documentation
specialists, trainers, and testers are all involved in large software projects. Each of these
groups of workers has a role to play and has specific responsibilities and tasks. In addiﬁon,
each group makes decisions that can affect the software’s quality and the ability of an
organization or an individual to use it effectively. .

Most software companies have adopted a software development methodology—a
standard, proven work process that enables systems analysts, programmers, project man-
agers, and others to make controlled and orderly progress while developing high-quality
software. A methodology defines activities in the software development process and the
individual and group responsibilities for accomplishing these activities. It also recom-
mends specific techniques for accomplishing the various activities, such as using a

Chapter 7

i
)

{
Copyright 2014 Cengage Loming. ARl Rights Rescrved. May no be copid. scamned., o dupiicaed,in whole o in part. Duc o clectronic righs, some thind pary conteat may be suppressed from th cBaok andior ¢Chapterts)
Mnﬁnha—dhw-ﬂﬂmumwm““hﬁ,ﬂmﬂ Coatmme Lomas Pt et - -

4 flowchart to document the logic of a computer program. A methodology also offers guide-
lines for managing the quality of software during the various stages of development. See
Figure 7-1. If an organization has developed such a methodology, it is typically applied to

any software development that the company undertakes.

Activities

_ Quality
Techniques guidelines

Responsibilities

FIGURE 7-1 Software development methodology

Source Line: Course Technology/Cengage Learning.

and cheaper to avoid software problems from

the beginning, rather than attempt to fix the damages after the fact. Studies have shown
that the cost to identify and remove a defect in an early stage of software development
(requirements definition) can be up to 100 times less than removing a defect in a piece of
software that has been distributed to customers (see Figure 7-2).242% Although these stud-
ies were conducted several years ago, their results still hold true today.

As with most things, it is usually easier

1200

1000
800 /
600 /
400 /
200 /
0 *‘-——'//

Relative cost

FIGURE 7-2 The cost of removing software defects
Source Line: Used with permission from LKP Consulting Group.

Software Development

Copyright 2014 Cengage Learning. All Rights Reserved. M: i n.
: gy not be copied, scanncd, or duplicated, i i third conicnt may be ressed from the eBook and/or
ik 20 . < o plicated, in whole or m part. Due to electronic righs, so arty supp and/or eChaptert;
Editonal review has decmed that any suppressed contcat does not materially affect the overall leaming evpetience. Cengage Leaming rescrves the right ml‘n:nw\': additional :o| nl-uu any time if subse :; n ml ions l)“ n
at any time if quent rights jons requi

272

Chapter 7

s _tisnid Canssse Leaming

stage of development, some rework oti the

| be necessary. The later the error is

ho will be affected by the error. Thus, the .
fix the error. Consider the cost to communi-
es, and possibly retrain end
housands of customers.
rly in the development
y to improve

If a defect is uncovered during a later :
deliverables produced in preceding stages wil
detected, the greater the number of people w
greater the costs will be to communicate and ' .
cate the details of a defect, distribute and apply software fix
users for a software product that has been sold to hundreds or t
Thus, most software developers try to identify and remove errors (::ﬂ’
process not 6nly as a cost-saving measure but also as the most efficient wa
software quality. .

A pr:duct }::ontaining inherent defects that harm the user may be thG': subject of ?
product liability suit. The use of an effective methodology can protect software manufac-
turers from legal liability in two ways. First, an effective methodology reduces the number
of software errors that might occur. Second, if an organization follows widely accepted
development methods, negligence on its part is harder to prove. However, even a success-
ful defense against a product liability case can cost hundreds of thousands of dollars in
legal fees. Thus, failure to develop software carefully and consistently can be serious in
terms of liability exposure.

Quality assurance (QA) refers to methods within the development cycle
designed to guarantee reliable operation of a product. Ideally, these methods are
applied at each stage of the development cycle. However, some software manufactur-
ing organizations without a formal, standard approach to QA consider testing to be
their only QA method. Instead of checking for errors throughout the development
process, such companies rely primarily on testing just before the product ships to
ensure some degree of quality.

Several types of tests are used in software development, as discussed in the following
sections.

Dynamic Software Testing

Software is developed in units called subroutines or programs. These units, in turn, are
combined to form large systems. One approach to QA is to test the code for a completed
unit of software by actually entering test data and comparing the results with the expected
results in a process called dynamic testing. There are two forms of dynamic testing:

* Black-box testing involves viewing the software unit as a device that has
expected input and output behaviors but whose internal workings are
unknown (a black box). If the unit demonstrates the expected behaviors for
all the input data in the test suite, it passes the test. Black-box testing takes
place without the tester having any knowledge of the structure or nature of
the actual code. For this reason, it is often done by someone other than the
person who wrote the code. '

i* White-box testing treats the software unit as a device that has expected input
i and output behaviors but whose internal workings, unlike the unit in black-

- box testing, are known. White-box testing involves testing all possible logic
paths through the software unit with thorough knowledge of its logic. The test
data must be carefully constructed so that each program statement executes
at least once. For example, if a developer creates a program to calculate an

“w“m,d_Mly,,olumtd.?ﬂlﬂ‘!ﬂw.hwan:hmpumdmmmm.wmethudpmymmmthm&nn-h..u....n........

employee’s gross pay, the tester would develop data to test cases in which the
employee worked less than 40 hours, exactly 40 hours, and more than 40
hours (to check the calculation of overtime pay).

Other Types of Software Testing
Other forms of software testing include the following:

e Static testing—Special software programs called static analyzers are run
against new code. Rather than reviewing input and output, the static analyzer
looks for suspicious patterns in programs that might indicate a defect. 273
o Integration testing—After successful unit testing, the software units are com-
bined into an integrated subsystem that undergoes rigorous testing to ensure
that the linkages among the various subsystems work successfully.
o System testing—After successful integration testing, the various subsystems
are combined to test the entire system as a complete entity.
e User acceptance testing—Independent testing is performed by trained end
users to ensure that the system operates as they expect.

Capability Maturity Model Integration

Capability Maturity Model Integration (CMMI)—developed by the Software Engineering
Institute at Carnegie Mellon—is a process-improvement approach that defines the essen-
tial elements of effective processes. The model is general enough to be used to evaluate
and improve almost any process, and a specific application of CMMI—CMMI-Development
(CMMI-DEV)—is frequently used to assess and improve software development practices.
CMMI defines five levels of software development maturity (see Table 7-1) and identifies
the issues that are most critical to software quality and process improvement.

TABLE 7-1 Definition of CMMI maturity levels

Maturity level Description .

Initial Process is ad hoc and chaotic; organization tends to overcommit and . %f

processes are often abandoned during times of orisis. s v

Managed " Projects ‘eﬁip‘lc\i:y’ processes andskilledpeoplc at;tusof voxk rodaaat
_ ploy: pro and skilled people; status of work produc

1+ visible to n}gn}u'g\emmé‘flttat;@ﬁned,pgjn;s.f"” LA A A A

Ve

Defined Processes are well defined and understood and are described in standards,
procedures, tools, and methods; processes are consistent across the
organization.

-

Quantitatively managed ' Quantitative objectives for quality and process performance dreéawt‘;;«%
lished and are use_4 as criteria in managing projects; specific measures:oft

process performance are collected and statistically analyzed, i B

' : ¥ TRy PSNRCA L ORI T AR KL o
Optimizing Organization vontinually improves its processes; changes are basedona_
quantitative understanding of its business objectives and performance -

needs. AT

2

Source Line: Used with permission from Carnegice Mcilon University.

Software Development

Copynight 2014 Cengage Leaming All Rights Rescrved May not be copied. scanned, or duplicated, i whulc or in part. Duc 10 clectronic rights. somc third party content may be suppressed from the eBook and/or eChapier(s)
sonal review has doomed that any suppressed conlent does ol materially affcct the overall learning x| c i, Vi 0 remoy i
4 | has d d) perience, Cengage Learming reserves the right lo remove addiuonal content at) r
I amy ime if subscquent nghts restnctions require it

as that improve an
rrent maturity level
e performance-

e its progress

ot of process are
on’s cu

ization’s futur
d demonstrat

f ices for a s
ts of practices fo Ces;
Identifying an organizatl
o improve the organ
e, an

A maturity level consis
overall performance.
tions ¢
zation to track, evaluat

ations at each CMM
anizations as of S

organization’s
enables it to specify necessary ac

The model also enables an organi
I maturity level, as

eptember 2012.

over the years. .

Table 7-2 shows the percentages of organiz
reported in a recent survey of 5,159 reporting org
ations

TABLE 7-2 Maturity level distribution across a large sample of organiz
urveyed

Percent of 5,159 organizations S

274 Maturity level

Not provided ‘

ﬁal

N NN

Managed

Source Line: Used with permission from Carnegie Mellon University.

The Software Engineering Institute documented the following results from CMMI
process-improvement implementations at 11 different organizations:

* A 33 percent decrease in the cost to fix defects
e A 20 percent reduction in unit software costs

e A 30 percent increase in productivity

* An increase in project-schedule milestones met—from 50 percent to

95 percent®®

CMMI-DEYV is a set of guidelines for 22 process areas related to systems development.
The premise of the model is that those organizations that do these 22 things well will have
an outstanding software development process. After ‘an organization decides to adopt
CMMI-DEV, it must conduct an assessment of its software development practices (using
trained, outside assessors to ensure objectivity) to determine where the organization fits in
the capability model. The assessment identifies areas for improvement and establishes
action plans needed to upgrade the development process. Over the course of a few years
the organization can improve its maturity level by executing the action plan. ,

CMMI-DEV can also be used as a benchmark for comparing organizations. In the
awarding of software contracts—particularly by the federal government—organizations
that bid on a contract may be required to have adopted CMMI and to be performing at a
certain level.

Achieving Maturity Level 5—the highest possible rating—is a significant accomplish-
ment for any organization, and it can lead to substantial business benefits. It means that the
organiza‘t.ion is able to statistically evaluate the performance of its software development
processes. This in turn leads to better control and continual improvement in the processes,

making it possible to deliver software products of high quality on time and on budget.

Chapter 7
. Vl duplicated, in whole or i Duc to electronic righ! me third
) . od M wum’d“" plic whol or in part. Duc to ic rights. some third party content may be suppressed from the eBook and/or eChapter(s)
Copyright 2014 Cm::“l,a-:u All M::mw n:lym sterially aflcet the averall leaming experience. Cengage Leamning rescrves the night 1o remove additional content at any time if subscquent rights restrictions require it
dehum y suppress

At the Rolling Meadows campus of Northrop Grumman, workers design, develop,
and manufacture advanced electronic systems for customers worldwide. The. campus
was recently assessed and rated at CMMI Level 5. According to Dan Blase, director of)
engineering at the facility, “Continuous improvement is an integral part of t‘he culture 2
Northrop Grumman. This CMMI rating reflects our commitment to performing at the

927
_) ssible.’
highest level for our customers, and doing so in the most affordable manner po

KEY ISSUES IN SOFTWARE DEVELOPMENT

Although defects in any system can cause serious problems, the consequences .Of sti‘f,t;\('la:z
defects in certain systems can be deadly. In these kinds of systems, the s.takecsl ln.Vf) ve
creating quality software are raised to the highest possible level: The ethlcalf ec1s1oas
involving a trade-off—if one must be considered—between quality an(.i su.ch ac}tlors s
cost, ease of use, and time to market require extremely serious examination. The nemk
sections discuss safety-critical systems and the special precautions companies must take
in developing them.

Development of Safety-Critical Systems

A safety-critical system is one whose failure may cause human injury or death. The
safe operation of many safety-critical systems relies on the flawless performance of
software; such systems control automobiles’ antilock brakes, nuclear power plant reac-
tors, airplane navigation, elevators, and numerous medical devices, to name just a few.
The process of building software for such systems requires highly trained professionals,
formal and rigorous methods, and state-of-the-art tools. Failure to take strong measures
to identify and remove software errors from safety-critical systems “is at best unprofes-
sional and at worst lead[s] to disastrous consequences.”?® However, even with these
types of precautions, the software associated with safety-critical systems is still vulnera-
ble to errors that can lead to injury or death. Here are several examples of safety-critical
system failures:

The Mariner I space probe, which was intended to make a close flyby of the
planet Venus, was ordered destroyed less than five minutes after launch in
July 1962. Faulty software code caused the flight control computer to- per-
form a series of unnecessary course corrections, which threw the spacecraft
dangerously off course.?® |

A Royal Air Force helicopter took off from Northern Ireland in June 1994
with 25 British intelligence officials who were heading to a security confer-
ence in Inverness. Just 18 minutes into its flight, the helicopter crashed on
the peninsula of Kintyre in Argyll, Scotland, killing everyone on board. The
engine management software, which controlled the acceleration and deceler-
ation of the engines, was suspected of causing the crash.3°

Between November 2000 and March 2002, therapy planning software at the
National Oncology Institute in Panama City, Panama, miscalculated the

proper dosage of radiation for patients undergoing therapy; at least eight

patients died while another 20 received overdoses that caused significant
health problems.*’

Software Development

Copyright 2014 Cengage Learning. AN Rights Reserved. May not be copied, scanned. or du
X plicatzd, in whele cr in part. Duc Io elecironic ri conlent suppressed ¢Book and/or eChaprery
Fduanal roview has docmed (hat any suppressed conient docs not materially affect the overall leaming experi Cm::ge L Oo reserves n::'::: o P:&m“ By from the)
Ly 3 remove conlend at any Ume of sub nahts

e

276

Chapter 7

n Railroad roller

2003 and July 2004. One person
ptember accident. Tht?

calth blamed the accndents’
s, and a glitch in the ride’s

ed on the Big Thunder Mountai

se accidents occurT ‘
- yland between bepte(rinhel;l e
i in th
was killed and 10 others were injure

inJ dH
. 7] y d n y
Ui Occupational Safety 2
a Division of p ly trained operator

coaster at Disne

Californi
on improper maintenance, poor
six-car Metro train as it

ke were seen underneath
he floor of the car.

computer system.’ . D.C.
e In April 2007, fire broke out on a Wasthl:gton,d sm(,)
i n
> the L’Enfant Plaza station. kire a
pulled out of the L e pemetrate ¢

the last car, but thankfully, the flames di wrate e o entually
The train operator stopped and evacuated the passcflgle h Sighingnd
determined that the train’s brake resistor grid, which che

[itoring software failed
systems and voltages, overheated and caught fire. Monitoring eofi T in
i i i ss power us
to perform as expected in detecting and preventing €Xcess p Jaage
equipment on the passenger rail cars, resulting in overheating an .

When developing safety-critical systems, a key assumption must be that safety will not
automatically result from following an organization’s standard development methodology.
Safety-critical software must go through a much more rigorous and time-consuming devel-
opment process than other kinds of software. All tasks—including requirements definition,
systems analysis, design, coding, fault analysis, testing, implementation, and change
control—require additional steps, more thorough documentation, and vigilant checking
and rechecking. As a result, safety-critical software takes much longer to complete and is
much more expensive to develop.

Software developers working on a safety-critical system must also recognize that the
software is only one component of the system; other components typically include system
users or operators, hardware, and other equipment. Software developers must work
closely with safety and systems engineers to ensure that the entire system, not just the
software, operates in a safe manner.

The key to ensuring that these additional tasks are completed is to appoint a system
safety engineer, who has explicit responsibility for the system’s safety. The safety engineer
uses a logging and monitoring system to track hazards from a project’s start to its finish.
This hazard log is used at each stage of the software development process to assess how it
has accounted for detected hazards. Safety reviews are held throughout the development
process, and a robust configuration management system tracks all safety-related matters.
However, the safety engineer must keep in mind that his or her role is not simply to pro-
duce a hazard log but rather to influence the design of the system to ensure that it oper-
ates safely when put into use.

The increased time and expense of completing safety-critical software can draw
developers into ethical dilemmas. For example, the use of hardware mechanisms to back
up or verify critical software functions can help ensure safe operation and make the con-
sequences of software defects less critical. However, such hardware may make the final
product more expensive to manufacture or harder for the user to operate—potentially
making the product less attractive than a competitor’s. Companies must carefully weigh
these issues to develop the safest possible product that also appeals to customers.

Anoi:her key issue is deciding when the QA staff has performed sufficient testing. How
much te‘sting is enough when you are building a product whose failure could cause loss of

human life® At some point, software developers must determine that they have completed
sufficient QA activities and then sign off to indicate their approval. Determining how much
testing is sufficient demands careful decision making.

When designing, building, and operating a safety-critical system, a great deal of effort
must be put into considering what can go wrong, the likelihood and consequences of such
occurrences, and how risks can be averted, mitigated, or detected so the users can be
warned. One approach to answering these questions is to conduct a formal risk analysis.
Risk is the probability of an undesirable event occurring times the probability that the event
would go undetected times the magnitude of the event's consequences if it does happen.
These consequences include damage to property, loss of money, injury to people, and death.

For example, if an undesirable event has a 1 percent probability of occurring, a 25
percent chance of going undetected, and a potential cost of $1,000,000, then the risk can
be calculated as 0.01 x .25 x $1,000,000, or §2,500. The risk for this event would be
considered greater than that of an event with a 10 percent probability of occurring, a
20 percent chance of going undetected, and a potential cost of 8100 (0.10 x .20 x $100 =
£2.00). Risk analysis is important for safety-critical systems but is useful for other kinds of
software development as well.

Another key element of safety-critical systems is redundancy, the provision of multi-
ple interchangeable components to perform a single function in order to cope with failures
and errors. An example of a simple redundant system would be an automobile with a spare
tire or a parachute with a backup chute attached. A more complex system used in ITisa
redundant array of independent disks (RAID), which is commonly used in high-volume
data storage for file servers. RAID systems use many small-capacity disk drives to store
large amounts of data to provide increased reliability and redundancy. Should one of the
drives fail, it can be removed and a new one inserted in its place. Because the data has
also been stored elsewhere, data on the failed disk can be rebuilt automatically without
the server ever having to be shut down.

During times of widespread disaster, lack of sufficient redundant systems can lead to
major problems. For example, the designers of the reactors at Japan’s Fukushima Daiichi
Nuclear Power Plant anticipated that a strong earthquake and even a tsunami might hit
the facility. So in addition to a main power supply, backup generators were put in place to
ensure that coolant could be circulated to the nuclear reactors even if the main power
supply was knocked out. When a 9.0 earthquake hit the area in early 2011, it knocked out
the main power supply, but the backup power supply was still working until it was hit with

a tsunami 10 meters high, twice the height of what had been anticipated in the design of
the redundant power supplies of the plant.**

N-version programming is an approach to minimizing the impact of software errors by
independently implementing the same set of user requirements N times (where N could be
2, 3, 4, or more). The different versions of the software are run in parallel, and if the out-
puts of the different software vary, a “voting algorithm” is executed to determine which
result to use. For example, if two software versions calculate the answer to be 2.4 and the
third version calculates 4.1, the algorithm might choose 2.4 as the correct answer. Each
software version is built by different teams of people using different approaches to write
programming instructions designed to meet the users’ requirements. In some cases,
instructions are written by teams of programmers from different companies and run on
different hardware devices. The rationale behind N-version programming is that multiple

Software Development

Copynight 2014 Cengage Learning. All Rights Rescrved. May not be copicd, scanncd, or duplicated, in whole or in part. Duc to clectronic rights, some (hird
: , party contcnt may be suppressed from the eBook and/or cChagter(
Edstosial review has deemed that any suppressed contont docs not matcrially affect the overall lcaming cxperionce. Congage Leaming rescrves the right o remove additional content at any ume il subscquent rights restrictions nq.:'\n it

278

Chapter 7

e conditions.
1 at the same time under the S27 rogram-
o fail at the ¢ T ot result. Triple-versmrl p
cor

systems. :
rol &7 a systen, it must decide what

It and controversial because

highly unlikely t

software versions are . vield
Thus. one or more of the versions should f i,
Y 1e and spacecra t co o
letermines all pertinent 11'1sds?fﬁcu |
- ion i ely di - i
level of risk is acceptable. This decision : ett:;imva}l’ue S uman lfe, esessing potznm:i
judg s abou e ' and esti-
Tl g the surrounding natural envxronmefnt;1 e of
) if the le
ificati must be made i
tem modifications . o
Modifications can include addnng redur;]da "
containment vessels, protective wa e,
he consequences of failure by devising
organizations must ask how safe

ming is common in airplar
After an organization ¢

it involves forming pe
liability in case of an accident, evaluatin
mating the system’s costs and benefits. Sys
risk in the design is judged to be too great.
components or using safety shutdown systems,
escape systems. Another approach is to mitigate t
emergency procedures and evacuation plans. In all cases,
is safe enough if human life is at stake.

Manufacturers of safety-critical systems mu
product when data indicates a problem. For example, automo
been known to weigh the cost of potential lawsuits against that of a reca
passengers in affected automobiles (and, in many cases, the courts) have not found this
approach to be ethically sound. Manufacturers of medical equipment and airplanes
have had to make similar decisions, which can be complicated if data cannot pinpoint
the cause of a particular problem. For example, there was great controversy in 2000
over the use of Firestone tires on Ford Explorers after numerous tire blowouts and
Explorer rollovers caused multiple injuries and deaths. However, it was difficult to
determine if the rollovers were caused by poor automobile design, faulty tires, or
improperly inflated tires. Consumers’ confidence in both manufacturers and their
products was nevertheless shaken.

Reliability is a measure of the rate of failure in a system that would render it unusable
over its expected lifetime. For example, if a component has a reliability of 99.9 percent, it
has one chance in a thousand of failing over its lifetime. Although this chance of failure’
may seem low, remember that most systems are made up of many components. As you
add more components, the system becomes more complex, and the chance of failure
increases. For example, assume that you are building a complex system made up of seven
components, each with 99 percent reliability. If none of the components has redundancy
built in, the system has a 93.8 percent (.99") probability of operating successfully with no
component malfunctions over its lifetime. If you build the same type of system using 10
components, each with 99 percent reliability, the overall probability of operating without
an individual component failure falls to 90 percent. Thus, building redundancy into sys-
tems that are both complex and safety critical is imperative. System engineers sometimes
refer to the goal of designing a system with “five nines” (99.999%) reliability. This trans-
lates to a system that would have only 5.26 minutes of total downtime in a year.

Reliability and safety are two different system characteristics. Reliability has to do
with the capability of the system to continue to perform; safety has to do with the ability
of the system to perform in a safe manner. Thus, a system could be reliable but not safe.
For example, an antiaircraft missile control system may continue to operate under a wide
range of operating conditions so that it is considerable reliable. If, however, the control
system directs the missile to change direction and to fly back into its launching device, it

is certaiply unsafe.
i

st sometimes decide whether to recall a
bile manufacturers have
1. Drivers and

One of the most important and difficult areas of safety-critical system de51grr; is tl:;ce y
system-human interface. Human behavior is not nearly as predictable as t¥1e pe Our:tl e
hardware and software components in a complex system. The system des1gne£; :‘ﬁvely The
sider what human operators might do to make a system work less safely or ef ; en-on.eous
challenge is to design a system that works as it should and leaves. little -m_(:;ief otom must
judgment on the part of the operator. For instance, a sclf-fnedic;;tmg pa;:lalqo régulate itself
allow a patient to press a button to receive more pain rehe.Ver, u_t mu. doéq e anticipate
to prevent an overdose. Additional risk can be introduced if a desngnedr X t};e iy presaures
the information an operator needs and how the operator will rea'ct urtls ebollt e P per- -
of actual operation, especially in a crisis. Some people keep their wi ’ all o worse.
form admirably in an emergency, but others may panic and' make a t.a :s i teadho con-

Poor design of a system interface can greatly inc.:re.ase l'lS.k, s%n;; l‘ll?ncenms ook an
sequences. For example, in July 1988, the guided m1§snle cruiser s down over
Iranian Air commercial flight for an enemy F-14 jet fighter and shot t T{ﬂ e mvosti-
international waters in the Persian Gulf. All 290 people or'l board were r:: f e erators
gators blamed the tragedy on a lack of trairllling :ch; .expzn:r::; o;le;l]l)eo :: 00(:1 g

fusing interface of the $500 million Aegis rada : - A
?I‘I;i T:gio::i:rﬂ cgm the Vincennes locked onto an Airbus 300, but it wa's .mlsxdtla‘x;;f;e:ih:s a
much smaller F-14 by its human operators. The Aegis c?perators also m1S1;1ter.pbus o
system signals and thought that the target was descending, eive.an though t <ta :lltl:mde_it s
a}:mally climbing. A third human error was made in determining the mge i -
off by 4,000 feet. As a result of this combination of human egors, the Vincennes
thought the ship was under attack and shot down the plane.

Quality Management Standards

The International Organization for Standardization (ISO), founded in 1947, is a worldwide
federation of national standards bodies from 161 countries. The organization issued its
9000 series of business management standards in 1988. These standards require organiza-
tions to develop formal quality management systems that focus on identifying and meeting
the needs, desires, and expectations of their customers.

The ISO 9001 family of standards serves as a guide to quality products, services, and
management. ISO 9001:2008 provides a set of standardized requirements for a quality
management system. It is the only standard in the ISO 9001 family for which organizations
can be certified. Over 1 million organizations in more than 175 countries have ISO 9001
certification.® Although companies can use the standard as a management guide for their
own purposes in achieving effective control, the priority for many companies is having a
qualified external agency certify that they have achieved ISO 9001 certification. Many busi-
nesses and government agencies both in the United States and abroad insist that a potential
vendor or business partner have a certified quality management system in place as a condi-
tion of doing business. Becoming ISO 9001 certified provides proof of an organization’s

commitment to quality management and continuous improvement.

To obtain this coveted certificate, an or

ganization must submit to an examination by
an external assessor and must fulfill the following requirements:

Ilave written procedures for all processes
Follow those procedures

Cw,vn;hl 2014 C:ngaac Lcaming All Rights Rescrved. M not be i cann r i iny
» N) 8 . May copicd. scanncd, o d“pllcalﬂd, n whale or i

cd content does not malcrially 2 pe. Dhue s lecironic cAgwes, i Bind con

, tent may be suppressed from th eBo&.dk.eQw(
ngage Leaming rescrves the right 1o remove addilional content at any ime if '\'l:' .)

aflect the overall leaming experience. Ce;

hapter 7

ments; this proof

L or fwvo require
first (wo red with custo-

- has fulfilled the 4 views
tor that it has b oes and intery
srove to an auditor the : ‘ - otices
o hservation of actual wo k pr
can require observi |
s, suppliers, and employees ot the pecial
o ipplying 1SO 9001 to bee
reri (o] - - . ﬂl .
) hase development, operation, m
H 1=

Many software development organizations ‘
needs and requirements associated with the pure |
nance, and supply of computer software. S AN important technique used to develop

Failure mode and cffects analysis (FMEN) is ““'lmp_ -I"‘ bility and determining the
ISO 9001-compliant quality systems by both evaluating H-ll X ';ccording to their impact
effects of system and equipment failures. Failures are ?I:lh.\lht‘(‘ O istaction, and cus-
on a project’s success, personnel safety, equipment salct.\'v"fuhmmt -ocess failures early in
tomer safety. The goal of FMEA is to identify potential design and process Iz
a project, when they arc relatively easy and inexpensive to cm:rcct. ‘ he desired

\ failure mode describes how a product or process could fail to perform the det
functions described by the customer. An effect is an adverse consequence that t}?e cus-
tomer might experience. Unfortunately, most systems are so complex that there is seldom
a one-to-one relationship between cause and effect. Instead, a single cause may have n'1u1-
tiple effects, and a combination of causes may lead to one effect or multiple effects. It is
not uncommon for a FMEA of a system to identify 50 to 200 potential failure modes.

The use of FMEA helps to prioritize those actions necessary to reduce potential fail-
ures with the highest relative risks. The following steps are used to identify the highest

riority actions to be taken:
p 3

* Determinc the severity rating—The potential effects of a failure are scored on
a scale of 1 to 10 (or 1 to 5) with 10 assigned to the most serious conse-
quence (9 or 10 are assigned to safety- or regulatory-related effects).

* Determine the occurrence rating—The potential causes of that failure occur-
ring are also scored on a scale of 1 to 10, with 10 assigned to the cause with
the greatest probability of occurring,

* Determine the criticality—Criticality is the product of severity times occurrence.

* Determine the detection rating—The ability to detect the failure in advance
of it occurring due to the specific cause under consideration is also scored
on a scale of 1 to 10, with 10 assigned to the failure with the least likely
chance of advance detection. For software, the detection rating would
represent the ability of planned tests and inspections to remove the cause
of a failure.

* Calculate the risk priority rating—The severity rating is multiplied by the occur-
rence rating and by the detection rating to arrive at the risk priority rating.’

Raytheon is a technology company that designs and manufactures aerospace and
defense systems that incorporate the latest electronic components. It employs 68,000
people worldwide and generated $24 billion in recent sales.*® Raytheon employs FMEA
throughout its product development life cycle. Starting early in the design cycle, the firm
invites suppliers to review its designs to identify potential failure modes, assess the ability
to detect the modes, and estimate the severity of the effects. The firm then uses this input
to prioritize the product design issues that need to be eliminated or mitigated to create
superior products.>’

Table 7-3 shows a sample FMEA risk priority table.

TABLE 7-3 Sample FMEA-risk priority table

Issue Severity Occurrence Criticality Detection Risk priority
#1 R} 4 12 9 108
#2 9 4 30 2 72
#3 4 S 20 4 80

Source Line: Course Technology/Cengage Learning,

Many organizations consider those issues with the highest criticality rating (severity X
occurrence) as the highest priority issues to address. They may then go on to address those
issues with the highest risk priority (severity x occurrence x detection). So although I%sue
#2 shown in Table 7-3 has the lowest risk priority, it may be assigned the highest priority
because of its high criticality rating. . '

Table 7-4 provides a manager’s checklist for upgrading the quality of the software an
organization produces. The preferred answer to each question is yes.

TABLE 7-4 Manager's checklist for improving software quality

Question

[1as senior management made a commitment to develop quality software?

Have you used CMMI to evaluate your organization’s software
development process?

Tlas your company adopted a standard software development methodology?

Does the methodology place a heavy emphasis on quality management
and address how to define, measure, and refine the quality of the softwarc
development process and its products?

Are software project managers and team members trained in the use of
this methodology?

Are software project managers and team members held accountable for
following this methodology?

Is a strong effort made to identify and remove errors as early as possible in
the software development process?

Are both static and dynamic software testing methods used?
Are white-box testing and black-box testing methods used?

Has an honest assessment been made to determine if the software being
developed is safety eritical? ‘

If the software is safety critical, are additional tools and methods employed,
and do they include the following: a project safety engineer, hazard logs,
safety reviews, formal configuration management systems, rigorous
documentation, risk analysis processes, and the FMEA technique?

Source Line: Course Technology/Cengage Learning.

Software Development

Copynght 2014 Ceagage Learmng Al Rights Reserved May not be copied. scanned. or duplicaied, w whole or i pan. Due to clectranic nghts. some third party content may be suppressed fram the ¢Book and Cl
Ldsbortal 1oy sow has deomad thal any suppressed conlent dues not matvrnialh affeet the overall learnmg expanence. Cenga c e onpaiahom et
alh g expancnce. Cengage Leaming reserves the night to remoye addit
onal content at any tme if subscauent nahis restretions reaure o

Summary

« High-quality software systems are,
and efficiently to meet their users needs, opera o a
degree of availability that keeps unexpected down "

i ort the

g been required to SUPP

fety, health care, military and defense, and S

e. Such systems perform qqickty
y. and have a high

asy to leam and US .
ot te safely and reliabl

minimum.

fields of air traffic control, .

« High-quality software has lon pace ex ploration,
nuclear power, automobile sa
among others.

« Now that computers and software have become integral p
demand for high-quality software is increasing. End users
lost work, or lower productivity. Nor can they tolerate security ho

can spread viruses, steal data, or shut down Web sites. .
Id cause a software system to fail

arts of almost every pusiness, the

cannot afford system crashes,
les through which intruders

e A software defect is any error that, if not removed, cou
to meet its users’ needs.
« Software quality is the degree to which a software product meets the needs of its users.

« Software developers are under extreme pressure to reduce the time to market of their pro-
ducts. They are driven by the need to beat the competition in delivering new functionality to
users, to begin generating revenue to recover the cost of development, and to show a profit
for shareholders.

« The resources and time needed to ensure quality are often cut under the intense
pressure to ship a new software product. When forced to choose between adding more
user features and doing more testing, many software companies decide in favor of more
features.

« Software product liability claims are typically based on strict liability, negligence, breach of
warranty, or misrepresentation—sometimes in combination.

« A software development methodology defines the activities in the software development pro-
cess, defines individual and group responsibilities for accomplishing objectives, recommends
specific techniques for accomplishing the objectives, and offers guidelines for managing the
quality of the products during the various stages of the development cycle.

« Using an effective development methodology enables a manutacturer to produce high-quality
software, forecast project-completion milestones, and reduce the overall cost to develop
and support software. An effective development methodology can also help protect software
manutacturers from legal liability for defective software in two ways: (1) by reducing the
number of software errors that could cause damage and (2) by making negligence
more difficult to prove.

« The cost to identify and remove a defect in the early stages of software development can
be up to 100 times less than removing a defect in a piece of software that has been
distributed to customers.

« Quality assurance (QA) refers to methods within the development cycle designed to guar-
antee reliable operation of a product. Ideally, these methods are applied at each stage of
the development cycle.

« Capability Maturity Model Integration (CMMI)—developed by the Software Engineering
Institute at Carnegie Mellon—is a process-improvement approach that defines the

essential elements of effective processes. CMMI defines five levels of software develop-
ment maturity: initial, managed, defined, quantitatively managed, and optimizing. CMMI
identifies the issues that are most critical to software quality and process improvement. Its
use can improve an organization’s ability to predict and control quality, schedule, costs,
and productivity when acquiring, building, or enhancing software systems. CMMI also

helps software engineers analyze, predict, and control selected properties of software
systems.

A safety-critical system is one whose failure may cause human injury or death. In
the development of safety-critical systems, a key assumption is that safety will not

automatically result from following an organization’s standard software development m
methodology.

Safety-critical software must go through a much more rigorous and time-consuming
development and testing process than other kinds of software; the appointment of a project

safety engineer and the use of a hazard log and risk analysis are common in the develop-
ment of safety-critical software.

The International Organization for Standardization (ISO) issued its 9000 series of business
management standards in 1988. These standards require organizations to develop formal

quality management systems that focus on identifying and meeting the needs, desires,
and expectations of their customers.

The 1SO 9001:2008 standard serves as a guide to quality products, services, and manage-
ment. Approximately 1 million organizations in more than 175 countries have 1ISO 9001

certification. Many businesses and government agencies specify that a vendor must be
ISO 9001 certified to win a contract from them.

Failure mode and effects analysis (FMEA) is an important technique used to develop

ISO 9001-compliant quality systems. FMEA is used to evaluate reliability and determine
the effects of system and equipment failures.

Key Terms

black-box testing

breach of warranty

business information system

Capability Maturity Model Integration (CMMI)
CMMI-Development (CMMI-DEV)
contributory negligence

decision support system (DSS)

integration testing

ISO 9001 family of standards
N-version programming
product liability

quality assurance (QA)
quality management

redundancy

deliverable reliability

dynamic testing risk
fa?lure mode safety-critical system
failure mode and effects analysis (FMEA) software defect
ha

. zard Iog software development methodology
high-quality software system

software quality

Software Developme

284

ipter 7

user acceptance testing
warranty

static testing |
white-box testing

strict liability
system safety engineer

system testing

Self-Assessment Questions

i endix B.
the Self-Assessment Questions can pe found In App

The answers to
e about a high-quality software SyS

o tem?
1. Which of the following is tru
It is more difficult to learn and use.

a.
b. It meets its users’ needs. .
c. It operates more slowly and deliberately.
d. It operates in an unreliable manner.
2. Software is the degree to which a software product meets the needs of

its users.
Which of the following is a major cause of poor software quality?

Many developers do not know how to design quality into software or do not take the

time to do so.
Programmers make mistakes in turning design specifications into lines ef code.

Software developers are under extreme pressure to reduce the time to market of their

a.

products.
d. Al of the above are major causes of poor software quality.

4. A decision support system might be used to do which of tne following?
a. process large numbers of business transactions
b. assist managers in developing accurate forecasts
c. control manufacturing processes

d. perform all of the above

5. The liability of manufacturers, sellers, lessors, and others for injuries caused by defective
products is commonly referred to as

6. A standard, proven work process for the development of high-quality software is called
a(n)

7. The:cost to identify and remove a defect in an early stage of software development is typi-
cally about the same as the cost of removing a defect in an operating piece of software
after it has been distributed to many customers. True or False?

8. A software is any error that if not removed could cause a software system
to fail to meet its users’ needs.

9. Methods within the development cycle designed to guarantee reliable operation of the
product are known as

10. Which of the following is a form of software testing that involves viewing a software unit

as a device that has expected input and output behaviors but whose internal workings
are known?)

a. dynamic testing

b. white-box testing
c. integration testing
d. black-box testing

11. Which of the following is an approach that defines the essential elements of an iﬁective
process and outlines a system for continuously improving software development”

a. CMMI-DEV
b. FMEA

c. 1S0O-9000
d. DOD-178B

12. One of the most important and difficult areas of safety-critical system design is the system-
human interface. True or False?

13. The provision of multiple interchangeable components to perform a single function to cope
with failures and errors is called:

a. risk

b. redundancy
c. reliability

d. availability

14. A reliability evaluation technigue that can determine the effect of system and equipment
failures is

15. When discussing system performance, the terms reliability and safety mean the same.
True or False?

16. In a lawsuit alleging , responsibility is limited to harmful defects that
could have been detected and corrected through “reasonable” software development
practices.

Discussion Questions

1. Identify the three criteria you consider to be most important in determining whether or not a
system is a quality system. Briefly discuss your rationale for selecting these criteria.

2. Briefly describe and give an example of a business information system, a decision support
system, and a control system.

3. Define and briefly discuss the difference between white box testing and black box
testing.

4. Explain why thej cost to identify and remove a defect in the early stages of software
development might be 100 times less than the cost of removing a defect in software that

Chapter 7

5. Explain the difference between strict liability an
6. Identify and briefly discuss two ways

10.

11.

12.

lopment

L r a software deve

Jetributed to customers. What are the implications fo

has been distribu '
, iAn

organization? d negligence.

f an effective software

that the use © s from legal liability for

rer
development methodology can protect software manufactu

defective software.

Your company is considering using N : _
development firms and three hardware devices for the navig

missile. Briefly describe what this means, and outline severa
tages of this approach.

Why is the system-human interface one of the most important
critical systems? Do a search on the Internet and find three goo
relating to how to design an effective system-human interface.
What is the difference between system reliability and system safety? Give an example
of a system that operates reliably but not safely.

Identify and briefly discuss the implications to a project team of classifying a piece of
software as safety critical.

Your organization develops accounting software for use by individuals to budget and
forecast their expenses and pay their bills while keeping track of the amount of money
in their savings and checking accounts. Develop a strong argument for the management
of your firm as to why the firm must conduct an assessment of its current software
development practices.

Discuss why an organization might elect to use a separate, independent team for quality
testing rather than the group of people who originally developed the software.

i ' software
.version programming with three '
o P ation system of a guided

| advantages and disadvan-

but difficult areas of safety-
d sources of information

What Would You Do?

Use the five-step decision-making process discussed in Chapter 1 to analyze the following
situations and recommend a course of action.

1.

Read the fictional Killer Robot case at the Web site for the Online Ethics Center for Engi-
neering at www.onlineethics.com/CMS/computers/compcases/killerrobot.aspx. The case
begins with the manslaughter indictment of a programmer for writing faulty code that
re§ulted in the death of a robot operator. Slowly, over the course of many articles, you
are introduced to several factors within the corporation that contributed to the accident.
After reading the case, answer the following questions:

a. Responsibility for an accident is rarely defined clearly and is often ditficult to trace to one
or two people or causes. In this fictitious case, it is clear that a large number of people
share responsibility for the accident. Identify all the people you think were at least par-
ktially responsible for the death of Bart Matthews, and explain why you think so.

b. ‘Imagine that you are the leader of a task force assigned to correct the problems
uncovered by this accident. Develop a list of the six most significant actions to take to
-avoid future problems.

i

Your manager is leading a project to develop new software that is essential to the suc-
cesg of the midsized manufacturing firm where you work. The firm has decided to hire
outside contractors to execute the project. One candidate firm boasts that its software

development practices are at level 4 of CMMI. Another firm claims that all its software

development practices are 1SO 9001 compliant. Your manager has come to you and

askgq for your opinion on how much weight should be given to these certifications when
deciding which firm to use. What would you say?

You are a programmer for a firm that develops a popular tax preparation software pack-
age designed to help individuals prepare their federal tax returns. In the course of testing
some small changes that were made to the software, you detect an error in the software
that results in roughly a 5 percent underestimation of the amount owed—both for those
who indicated that they were single and for those who indicated that they were married
but filing separate tax returns. It is now late March, and it is likely that well over 100,000

users who submitted their returns using your firm’s software will be affected by this error.
What do you do?

You are the project manager in charge of developing the latest release of your software
firm’s flagship product. The product release date is just two weeks away, and enthusiasm
for the product is extremely high among your customers. Stock market analysts are fore-
casting sales of more than $25 million per month. If so, earnings per share will increase
by nearly 50 percent. There is just one problem: two key features promised to customers
in this release have several bugs that would severely limit the software’s usefulness. You
estimate that at least six weeks are needed to find and fix the problems. In addition, even
more time is required to find and fix 15 additional, less severe bugs just uncovered by the
QA team. What would you recommend to management?

You developed a spreadsheet program that helps you perform your role of inventory
control manager at a small retail sports shoe store. The software uses historical sales
data to calculate expected weekly sales for each of about 250 shoes carried by the
store. Based on that forecast, you order the appropriate shoes from the various manu-
facturers. Your store is one of four shoe stores owned by the same person. You sent a
copy of the spreadsheet to each of the people responsible for inventory control at the
other three retail stores, and they are all now using your software to help them do their
jobs. You have started getting complaints that the software is not entirely accurate, and

you notice that your own estimates are no longer as accurate as they used to be. What
would you do?

You have been assigned to manage software that controls the shutdown of the new
chemical reactors to be installed at a manufacturing plant. Your manager insists the soft-
ware is not safety critical. The software senses temperatures and pressures within a
50,000-gallon stainless steel vat and dumps in chemical retardants to slow down the
reaction if it gets out of control. In the worst possible scenario, failure to stop a runaway
reaction would result in a large explosion that would send fragments of the vat flying and
spray caustic liquid in all directions.

Your manager points out that the stainless steel vat is surrounded by two sets of
protective concrete walls and that the reactor's human operators can intervene in case of
a software failure. He feels that these measures would protect the plant employees and
the surrounding neighborhood if the shutdown software failed. Besides, he argues, the

Software Developme

the
its scheduled start-up date. He can.?o; ff:.?c::,
ftware if it is classified as safety critical.

plant is already more than a year behind)
i e
her appropriate resources to decide whether

additional time required to develop the sO
would you work with your manager and ot

software is safety critical? | |
y major consulting firm. You have

7. You are a senior software development consultant with aft ' jevelopment process for
been asked to conduct a follow-up assessment of the softwa) agsessment
ABCXYZ Corporation, a company for which you had performed an initial 852 nv's
using CMMI two years prior. At the initial assessment, you determm.ed the compa yl of
level of maturity to be level 2. Since that assessment, the organization has spent .a 0

288 time and effort following your recommendations to raise its level of process maturity. The
organization appointed a senior member of its IT staff to be a process management guru
and paid him $150,000 per year to lead the improvement effort. This senior member
adopted a methodology for standard software development and required all project man-
agers to go through a one-week training course at a total cost of more than $2 million.

Unfortunately, these efforts did not significantly improve process maturity because
senior management failed to hold project managers accountable for actually using the
standard development methodology in their projects. Too many project managers
convinced senior management that the new methodology was not necessary for their
particular project and would just slow things down. You are concerned that when senior
management learns that no real progress has been made, they will refuse to accept par-
tial blame for the failure and instead drop all attempts at further improvement. You are
also likely to lose your contract with the firm. What would you do?

8. You are the CEO for a small, struggling software firm that produces educational software
for high school students. Your latest software is designed to help students improve their
SAT and ACT scores. To prove the value of your software, a group of 50 students who
had taken the ACT test were retested after using your software for just two weeks. Unfor-
tunately, there was no dramatic increase in their scores. A statistician you hired to ensure
objectivity in measuring the results claimed that the variation in test scores was statisti-
cally insignificant. You had been counting on touting the results in the promotion of your
new software.

A small core group of educators and systems analysts will need at least six months
to start again from scratch to design a viable product. Programming and testing could take
another six months. Another option would be to go ahead and release the current version
of the product and then, when the new product is ready, announce it as a new release.
This would generate the cash flow necessary to keep your company afloat and save the
jobs of 10 or more of your 15 employees. Given this information about your company’s
product, what would you do?

Cases

1. InterSystems Earns ISO 9001-2008 Certification

InterSystems is a privately held software development firm with recent sales revenue of
$446 million. The company is headquartered in Cambridge, Massachusetts, with offices in
25 countries worldwide.*® Recently, InterSystems became I1SO 9001:2008 certified for all

Chapter 7

, y | Rights Rescrved May not be copicd, scanned. or duplicaied, in whole or in pant Duc W electronic rights, some thisd party conient may be supprcssed from the ¢Book and/or eChagtarls)
Copynght 3014 Congage Learning, Al ‘f‘ i A et mimiallee affani tha ncmeall laacmiva semadanca Codanas | saming reserves the right tn remove addilional conlent at anv time if tubteauent nahis redrnetiane mes e o

processes related to p:oduct and service creation in connection with two of its primary products:
4 1 . .

Caché and Ensemble.*' By meetmg these requirements, InterSystems has proven that it has in

place systems and processes necessary to ensure that its products and services are delivered

in a cgntrolled and repeatable manner. ISO 9001-2008 certification is proof of an organization’s
commitment to quality management and continuous improvement.

The Caché product is a high-performance/high-reliability database management system.
The software comes bundled with an application development environment that assists pro-
grammers in the rapid development of software applications. Caché is used extensively by
organizations in clinical healthcare applications to develop systems that capture, organize,

and analyze healthcare records in ways that lead to better patient experiences and improved m
healthcare outcomes.*?

The Johns Hopkins Cancer Center, nationally recognized as one of the leading cancer
centers in the United States, is a major InterSystems customer. The hospital implemented an
advanced, multifunctional oncology clinical information system based on Caché. The system
records all interactions among patients, caregivers, providers, and administrators from the time
they register to enter the facility until they leave and are billed. During a typical visit to the cen-
ter, patients have multiple appoiniments with various care providers and undergo various tests
and treatments. Patients are issued a bar-coded ID that is scanned at strategic locations as
they move through the hospital—allowing personnel to track what appointments remain and
where the patient is at any time. Key data associated with all tests, treatments, and patient

results is captured so that care providers can review treatment approaches used in the past
to help decide the best treatment process for new patients.*3

Discussion Questions

1. A mission-critical system is one whose failure will result in an organization being unable

to continue business operations. A safety-critical system is one whose failure will result in
human injury or loss of life. Is the John Hopkins system described above mission critical
or safety critical? Why? Can you give an example of a safety-critical system that is not
mission critical?

. Caché and its associated application tools constitute a system that is used to build a wide
variety of information systems for customers around the world. Do you think that the Caché
software and tools should be considered a safety-critical system and undergo the rigorous
development process associated with such systems? If so, what would be the implications
for InterSystems and its customers in terms of costs and frequency of software modifica-

tions and updates? Would this put InterSystems at a competitive disadvantage to other
software development companies?

Should every organization that builds safety-critical systems be required to have all its
system development processes and tools ISO-9000: 2008 certified? Why or why not?

2. Apple Guidelines for App Approval

Apple’'s App Store has been a huge success ever since it was launched in 2008. As of
April 2013, the App Store offered more than 500,000 applications available for sale to owners

of Apple iPhone, iPad, and iPod devices—with more than 4 billion downloads in the first quarter
of 2013

Software Development

p Store, they must go through a
landestine and capricious rules to
and growing market of

n be sold through thg Ap
y some of using c e
from reaching the very large et
lication developer complained: If you submit 2

i it’ ing to be
have no idea when It's going)
f an app called “South Park™ com-

deemed “potentially offensive,”
e available at the Apple iTunes
laints, Apple finally provided

Before software applications ca
review process. Apple has been accused b
reject some programs—thus, blocking them
iPhone, iPad, and iPod Touch users. One app
app, you have no idea what's going to happen. You
approved or if it's going to be approved.”*® The developers 0
plained that their app was rejected because the content was
even though episodes of the award-winning animated sitcom ar
Store.® In September 2010, after more than two years of comp
application developers the guidelines it uses to review software.

Most guidelines seem to be aimed at ensuring that Apple users can only access
high-quality and noncontroversial apps from its App Store. Some of the Apple guidelme.s are
clear and their rationale is easy to understand, such as “apps that rapidly drain the device’s
battery or generate excessive heat will be rejected.” However, other guidelines are unclear and
highly subjective, such as “We will reject apps for any content or behavior that we believe is
over the line. What line, you ask? Well, as a Supreme Court Justice once said, ‘I'll know it when
| see it.” And we think that you will also know it when you cross it.”*” (“| know it when | see it”
was the phrase used by U.S. Supreme Court Justice Potter Stewart to describe his ability to
recognize rather than to provide a precise definition of hard core pornography in his opinion in
the case Jacobellis v. Ohio in 1964.)

The Electronic Frontier Foundation believes that while the guidelines are helpful, in some
cases Apple is defining the content of third-party software and placing limits on what is available
to customers of Apple’s App Store.*®

By way of comparison, Google places few restrictions on developers of software for its
competing Android Marketplace. However, there have been many low-quality applications
offered to Android Marketplace customers, including some that include malware. Indeed by early
2011, Google had pulled 21 Android applications from its Android Marketplace because, once
downloaded, the applications not only stole users’ information and device data, but also created
a backdoor for even more harmful attacks.*® Apple’s decision to finally share its applications
guidelines may have been an attempt to combat the rapidly increasing popularity of the
Android.* It may also have been a response to a U.S. Federal Trade Commission investigation
of a complaint from Adobe concerning Apple’s banning of the Flash software from devices that
run Apple’s iOS operating system. (Adobe® Flash® Player is a browser-based application that
runs on many computer hardware/operating system combinations and supports the viewing of
so called “rich, expressive applications,” content, and videos across screens and browsers.)®"

‘Discus’sion Questions

1. Should Apple conduct extensive screening of apps before they are allowed to be sold on
the App Store? Why or why not?

2. Do research to determine the current status of the FCC investigation of Apple for banning
use of the Adobe Flash software on devices that use the iOS operating system:

3. What do you think of Apple’s guideline that says it will reject an app for any content or
behavior that they believe is “over the line"? Could such a statement be construed as a
violation of the developer's freedom of speech? Why or why not?

3. Software Errors Lead to Death

Med.ica| linear accelerators have long been a critical piece of medical equipment in the fight
against cancer. Linear accelerators deliver radiation therapy to cancer patients by accelerating
electrons to create high-energy beams, which can kill cancer tumors without impacting sur-
rounding healthy tissue. Tumors close to the skin can be treated with the accelerated electrons;

however, for tumors that are more deeply embedded, the electron beam is converted into an
X-ray photon beam, which is diffused using a beam spreader plate.

The Canadian firm Atomic Energy of Canada Limited (AECL) and a French company
named CGR collaborated to build two models of medical linear accelerators. One model, the
Therac-6, was capable of producing only X-rays that could be used to kill tumors close to the
skin. A later model, the Therac-20, was capable of producing both X-ray photons and electrons
and thus could kill both shallow and deeply embedded tumors. Computer software was used to
simplify the operation of the equipment but not to control and monitor its operation. Instead,
industry standard hardware safety features were built into both models.*?

After the business relationship between the two firms failed, AECL went on to build the
Therac-25 based on a new design concept. Unlike the Therac-6 and Therac-20, which operated

without significant computer controls, computer software was used to both control and monitor
the Therac-25 accelerator.®®

The software for the Therac-25 was based on modified code from the Therac-6. The
software monitored the machine, accepted technician input for specific patient treatment, initial-
ized the machine to administer the defined treatment, and controlled the machine to execute the
defined treatment. The machine was enclosed in the patient treatment room to prevent radiation

exposure to the technicians. Audio and visual equipment allowed the patient to communicate
with the technicians.>*

A total of 11 Therac-25 machines were installed in the United States and Canada. Over a ‘
19-month period from June 1985 to January 1987, six serious incidents involving the use of the
device occurred. In each of the incidents, the patient received an overdose of radiation. Four of
the patients died from the overdose, and another eventually had to have both breasts removed

and lost use of her right arm as a result of the overdose. A final patient received burns and was
only able to fully recover several years after the incident.>®

Following each incident, AECL was contacted and asked to investigate the situation. However,
AECL at first refused to believe that its machine could have been responsible for an overdose.
Indeed, following the third incident, AECL responded, “After careful consideration, we are of the
opinion that this damage could not have been produced by any malfunction of the Therac-25 or by

any operator error.” AECL made seme minor changes to the equipment, but because the company
did not address the root cause of the problem, additional incidents occurred.5¢

Finally, a physicist at a hospital where two incidents occurred was able to re-create the
malfunction and show that the problem was due to a defect in the machine and its software.
A failure occurred when a specific sequence of keystrokes was entered by the operator.
Because this sequence of keystrokes was nonstandard, the problem rarely occurred and went
undetected for a long time. Entry of this combination of keystrokes within a period of eight
seconds did not allow time for the beam spreader plate to be rotated into place. The software

did not recognize the error, and the patient was then hit with a high-powered electron beam
roughly 100 times the intended dose of radiation.5”

Software Developn

i i d Health Canada (the .

In early 1987, the Food and Drug Admmlstratlor:](F[)C/-\Z)Sa:n“s hut down. Within
Canadian counterpart to the FDA) insisied that all Thera 5 metalled ndependent
the next six months, AECL implemented numerous code chang Ct.the ® oblom.5® Afer
hardware safety locks, and implemented other changes to corre o iy yoars.
these changes, the Therac-25 device continued to be safely use o ed in
However, at least three lawsuits were filed against AECL and the hospita o o
the earlie;r incidents. The lawsuits were settled out of court, and the results were
revealed.®®

m Discussion Questions

1. What additional measures must be taken in the development of software that, if it fails, can
cause loss of human life?

2. What can organizations do to reduce the negative consequences of software development

problems in the production of their products and the operation of their business processes
and facilities?

End Notes

1

“Regulation NMS,” NASDAQ OMX, www.nasdaqtrader.com/Trader.aspx?id:RegNMS
(accessed March 23, 2013).

Columbia Business School, “Press Release: High-Frequency Trading: Is It Good or Bad
for Markets?”, Yahoo! Finance, March 20, 2013, http://finance.yahoo.com/news/high-
frequency-trading-good-bad-130000973.html.

Ben Rooney, “Trading Program Sparked May ‘Flash Crash,”” CNN Money, October 1,
2010, http://money.cnn.com/2010/10/01/markets/S EC_CFTC_flash_crash/index.htm.

Ben Rooney, “Trading Program Sparked May ‘Flash Crash,’”” CNN Money, October 1,
2010, http://money.cnn.com/2010/10/01 /markets/SEC_CFTC_fIash_crash/index.htm.

BATS Global Markets, “Overview: About Us,” www.batsglobalmarkets.com (accessed
March 20, 2013).

Melanie Rodier, “Flash Crash at BATS Renews Market Concerns,” Wall Street &

Technology, March 23, 2012, www.wallstreetandtech.com/electronic-trading/ﬂash-crash-at-
bats-renews-market-concer/232700195.

D.M. Levine, “Apple Has Mini Flash Crash on BATS,” Huffington Post, March 23, 2012,
www.huffingtonpost.com/201 2/03/23/flash-crash-apple—stock-bats_n_1 375496.html.

Phil Albinus, “BATS Flash Crash: Here's What Happened,” Advanced Trading, March 26,

2012, www.advancedtrading.com/exchanges/bats-flash-crash-heres-what-happened/
232700223,

Pallavi Gogoi, “Knight Capital Blames Software for Computer Trading Glitch,” USA Today,
August 2, 2012,

" Pallavi Gogoi, “Knight Capital Blames Software for Computer Trading Glitch,” USA Today,

August 2, 2012,

Chapter 7

Copyright 2014 Cengage Learning, All Rights Reserved. May not be copicd. scanned, or duplicaled, in wholq or in part. Dug to elecironic rights. some third party content may be mppnl:ned' rom the cbo?k and/or _eC'hplev(Al:
Editonal review has deemed that any sg’ppusud canient does not materially affect the overall Iearing pxpmiencg. Cpngnge Leaning reserves the right 1o remove additional content at any time if subsequent rights restrictions require it.
§ Sk

1

12

13

16

17

18

19

20

21

22

23

24

25

26

27

Pallavi Gogoi, “Kni '
' ght Capital
August 2, 2012, pital Blames Software for Computer Trading Glitch,” USA Today

Ivy Schmerken,

Another i
Trading, Janary 10 201;e:vf\lln\ilczlcjlssue from BATS Rattles Confidence,” Advanced

) , .adv [
from-bats-ratile/240146030 ancedtrading.com/exchanges/another-technical-issue-

Greg Bensi .)
g Inger, “Software Glitch Mars Nokia's US Re-Entry,” Wall Street Journal (blog)

April 11, 2012, http:/blo - -
, » NUpP: $.Wsj.cO ' .
entry-with-att, gs.ws|.com/digits/2012/04/11/software-glitch-mars-nokias-us-re-

“IRS Software Glitch Dela
lays Some Tax Refunds,” Reuters, March 3, 2012
.)))) W .
.com/rs/2012/03/03/irs-software-glitch-delays-some-tax-refunds. Hasen 293

‘Software Glitch Cou!d Strand Chevy Volt Drivers,” Fox News, October 23, 2012,
www . foxnews.com/leisure/2012/10/23/software-glitch-could-strand-chevy-volt-drivers.

Lauren Walsh, “Software Error Prevents Many Georgia Stores from Selling Powerball

Tickets,” WAGT 26, November 25, 2012, www2.nbc26.tv/news/2012/nov/25/software-error-
prevents-many-georgia-stores-sellin-ar-5045240.

Chelsea Bannach, “WSU Software Glitch Stymies Students,” Spokesman-Review, August
22, 2012, www.spokesman.com/stories/2012/aug/22/wsu-software-glitch-stymies-students.

Katherine Noyes, “Actually, Open Source Code Is Better: Report,” PC World, February 23,
2012, www.pcworld.com/articIe/250543/actually_open_source_code_is_better_report.html.

Katherine Noyes, “Actually, Open Source Code |s Better: Report,” PC World, February 23,
2012, www.pcworld.com/article/250543/actually_open_source_code_is_better_report.html.

Klaus Enzenhofer, “Mobile App Performance — How to Ensure High Quality Experiences,”
Testing Experience, September 19, 2012, www.testingexperience.com/testingexperi-
ence19_09_12.pdf.

Cem Kaner, “Quality Cost Analysis: Benefits and Risks,” Software Quality Assurance 3, t
no. 1 (1996), www.kaner.com/pdfs/Quality__Cost_Analysis.pdf (accessed March 23, 2013).

Paul Bibby, “Qantas Exposed to Compo Claims,” WA Today, October 9, 2008,
www.watoday.com.au/nationaI/qantas—exposed-to-compo-claims-20081 009-4x6t.html.

Martin Samson, “M. A. Mortenson Co. V. Timberline Software Co. et al.” Internet Library
of Law and Court Decisions, www.internetlibrary.com/cases/lib_case206.cfm (accessed
March 23, 2013).

Barry W. Boehm, “Improving Software Productivity,” IEEE Computer 20, no. 8 (1987): 43-58.

Capers Jones, “Software Quality in 2002: A Survey of the State of the Art,” Software
Productivity Research, Inc., November 2002.

Dennis R. Goldenson and Diane L. Gibson, “Demonstrating the Impact and Benefits of
CMMI: An Update and Preliminary Results,” October 2003, www.sei.cmu.edu/reports/
03sr009.pdf.

Northrup Grumman, “Press Release: Northrop Grumman's Rolling Meadows Campus
Achieves CMMI(R) Maturity Level 5 Rating,” Globe Newswire, December 21, 2012,
www.irconnect.com/noc/press/pages/news_releases.html?d:1 0016400.

Software Development

1 e d Moy nol be copied. scanncd, or duplicaied, W hole or in part. Duc to clectranic rights. some third party content may be suppressed [rom the ¢cBook and/ar cChaples(s).
= . S i subsequent rights restriclions require it

